Lecture 5. Maps

PUBH 6199: Visualizing Data with R, Summer 2025

Xindi (Cindy) Hu, ScD 2025-06-17 1

Outline for today

- Types of maps for spatial data
- Map design considerations (color, projection, legend)
- R packages for mapping
- Static maps with tmap
- Interactive maps with leaflet
- Accessing spatial data with tigris and tidycensus

Types of Maps for Spatial Data

1. Choropleth Map

- Display the spatial distribution of a variable across divided geographical areas
- Best for **normalized** data (e.g., rates)
- Variable encoding: **color** (intensity or hue)

Example: Choropleth

- 1 library(tmap)
- 2 data("World")
- 3 tm_shape(World) +
- 4 tm_polygons("HPI", palette = "viridis", title = "Happy Planet Index")

2. Point Map

- Each point represents a location
- Can show locations of events, facilities, cases
- Variable encoding: color, shape, size

Example: Point Map

```
1 library(tidyverse)
 2 library(spData)
 3 library(tmap)
 4 data(urban agglomerations)
   urb_2030 <- urban_agglomerations |> filter(year == 2030)
 5
   tm shape(World) +
 6
     tm_polygons() +
 7
     tm shape(urb 2030) +
 8
     tm_symbols(fill = "black", col = "white", size = "population_millions",
 9
                size.legend = tm legend(title = "Urban Population in 2030\n(millions)"))
10
```


3. Heat Map (Density)

- Visualizes concentration of events
- Uses kernel density estimation or hex bins
- Variable encoding: **color** (intensity)

Example: Heat map with leaflet.extras

4. Faceted Map

- Create small multiples to compare across categories
- Great for time series or group comparisons

Example: Faceted Map

```
1 library(tidyverse)
 2 library(spData)
 3 library(tmap)
 4 data(urban agglomerations)
   urb_1970_2030 <- urban_agglomerations |> filter(year %in% c(1970, 1990, 2010, 2030))
 5
 6 tm shape(World) +
     tm_polygons() +
 7
     tm shape(urb 1970 2030) +
 8
     tm_symbols(fill = "black", col = "white", size = "population_millions",
 9
                size.legend = tm legend(title = "Urban Population\n(millions)")) +
10
     tm facets(by = "year", ncol = 2)
11
```


5. Interactive Map

- Enable zooming, hovering, filtering
- Useful for dashboards, web apps

Example: Interactive Map

Outline for today

- Types of maps for spatial data
- Map design considerations (color, scale, projection, legend)
- R packages for mapping
- Static maps with tmap
- Interactive maps with leaflet
- Accessing spatial data with tigris and tidycensus

Color Choices for Maps

- Sequential palettes for ordered values
- **Diverging** palettes for above/below mean
- **Qualitative** for categories

Source: Which color scale to use when visualizing data, by Lisa Charlottte Muth.

Categorical scales

- Use distinct hues for different categories
- Limit to no more than 7 hues

Note: Nebraska and Maine split electoral college votes by congressional district

Source: Analyzing US Census Data, by Kyle Walker

PUBH 6199: Visualizing Data with R

Sequential Scales

- Map value to color on a continuum, based on both intensity and hue
- Use for ordered data (e.g., population, income)

Source: Analyzing US Census Data, by Kyle Walker

PUBH 6199: Visualizing Data with R

Diverging Scales

- Use for data with a meaningful midpoint (e.g., above/below average)
- Two contrasting colors with a **neutral midpoint** (e.g., white/light gray)

Source: 2020 U.S. Election Mapped, by Vivid Maps

PUBH 6199: Visualizing Data with R

Avoid Misleading Colors

• Don't use rainbow: not perceptually uniform

Rainbow (Perceptually Nonlinear)

- Consider accessibility (color-blind safe palettes)
- Avoid encoding meaning with non-intuitive colors

Map Projections

- A projection distorts shape, area, distance, or direction
- Use equal-area projections for choropleths

Common Projections in R

Use Case	Recommended Projection	EPSG Code
Equal-area choropleths	Albers Equal Area	5070
Interactive maps	Web Mercator	3857
Global perspective	Robinson or Winkel Tripel	54030 / 54042
Local detail (U.S.)	NAD83 / State Plane	varies

Use st_transform() to convert:

```
1 my_data <- sf::st_transform(my_data, crs = 5070)</pre>
```

In tmap:

- In static mode: all layers are reprojected to match the first layer.
- In interactive mode: all layers are projected to EPSG:3857.

Outline for today

- Types of maps for spatial data
- Map design considerations (color, scale, projection, legend)
- R packages for mapping
- Static maps with tmap
- Interactive maps with leaflet
- Accessing spatial data with tigris and tidycensus

R Ecosystem for Mapping

- Data handling: sf, sp
- Thematic mapping: tmap, ggplot2, cartography
- **Basemaps & interactivity**: leaflet, mapview, ggmap
- Shapefiles: rgdal, rmapshaper
- Data access: tigris, tidycensus

{sf}: simple features

The {sf} package is the **standard way to work with vector spatial data in R**. It replaces older tools like {sp} with a **simple, tidy-friendly** interface.

Key Features of {sf}

- Stores **geometry + attributes** in a single data.frame-like object
- Built on simple features standard (ISO 19125-1)
- Fully compatible with dplyr, ggplot2, tmap
- Uses sfc column to store spatial information (e.g., points, polygons)

	Si	Simple feature collection with 100 features and 6 fields									
	Geometry type: MULTIPOLYGON										
	Di	Dimension: XY									
	Bounding box: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965										
	Geodetic CRS: NAD27										
	First 3 features:										
		BIR74	SID74	NWBIR74	BIR79	SID79	NWB	IR79		geoi	metry
	1	1091	1	10	1364	Θ		19	MULTIPOLYGON	(((-81.47276	3
	2	487	Θ	10	542	3	/	12	MULTIPOLYGON	(((-81.23989	3
	3	3188	5	208	3616	6/		260	MULTIPOLYGON	(((-80.45634	3
Simple feature Simple feature geometry											
list-colum (sfc) Simple feature geometry (sfg)							(stg)				
PUBH 6199: Visualizing Data with R											

Outline for today

- Types of maps for spatial data
- Map design considerations (color, scale, projection, legend)
- R packages for mapping
- Static maps with tmap
- Interactive maps with leaflet
- Accessing spatial data with tigris and tidycensus

Static Mapping with tmap

- Similar to ggplot2, based on "the grammar of graphics"
- Supports both static and interactive modes
- Excellent for quick, polished maps, sensible defaults

```
1 library(tmap)
2 tmap_mode("plot")
3 nc <- st_read("data/nc.shp", quiet = TRUE) # nc is an `sf` object
4 tm_shape(nc) + # defines input data
5 tm_polygons("BIR74", palette = "Greens") + # mapping data to aesthetics
6 tm_layout(title = "Pirths in NC 1074")</pre>
```

6 tm_layout(title = "Births in NC, 1974")

How {tmap} works?

{tmap} adopts an intuitive approach to map-making: the addition operator + adds a new layer, followed
by tm_*():

- tm_fill(): shaded areas for (multi)polygons
- tm_borders(): border outlines for (multi)polygons
- tm_polygons(): both, shaded areas and border outlines for (multi)polygons
- tm_lines(): lines for (multi) linestrings
- tm_symbols(): symbols for (multi)points, (multi)linestrings, and (multi)polygons
- tm_raster(): colored cells of raster data (there is also tm_rgb() for rasters with three layers)
- tm_text(): text information for (multi)points, (multi)linestrings, and (multi)polygons

Adding layers in {tmap}

- tm_polygons(): for choropleth maps
- tm_symbols(): for point data, size and color can represent different variables

```
1 # Create the map: choropleth + bubbles
2 tm_shape(nc) +
3 tm_polygons("BIR74", palette = "brewer.blues", title = "Births in 1974") +
4 tm_symbols(size = "SID74", col = "red", alpha = 0.5, border.col = "white",
5 title.size = "SID Cases (1974)")
```


Scale

Scales control how the values are represented on the map and in the legend, and can have a major impact on how spatial variability is portrayed

```
1 tm_shape(nz) + tm_polygons(fill = "Median_income")
2 tm_shape(nz) + tm_polygons(fill = "Median_income",
3 fill.scale = tm_scale(breaks = c(0, 30000, 40000, 50000)))
4 tm_shape(nz) + tm_polygons(fill = "Median_income",
5 fill.scale = tm_scale(n = 10))
6 tm_shape(nz) + tm_polygons(fill = "Median_income",
7 fill.scale = tm_scale(values = "BuGn"))
```


Style options for classifying map data

tm_scale_intervals(style = "pretty"):

- "pretty": Rounded, evenly spaced breaks (default).
- "equal": Equal-width bins; poor fit for skewed data may hide variation.
- "quantile": Equal count per bin; be careful with wide bin ranges.
- "jenks": Optimizes natural groupings; can be slow with large datasets.
- "log10_pretty": Log-scaled breaks; only appropriate for right-skewed, positive values.

Switch to interactive {tmap}

A unique feature of {tmap} is its ability to create static and interactive maps using the same code. Maps can be viewed interactively at any point by switching to view mode, using the command tmap_mode("view")

Outline for today

- Types of maps for spatial data
- Map design considerations (color, scale, projection, legend)
- R packages for mapping
- Static maps with tmap
- Interactive maps with leaflet
- Accessing spatial data with tigris and tidycensus

31

Interactive Mapping with {leaflet} in R

- {leaflet} is the most widely used interactive mapping package in R.
- It provides a relatively low-level interface to the Leaflet.js JavaScript library leafletjs.com.
- Maps start with leaflet() and use pipeable layers like addTiles(), addCircles(), and addPolygons().

Example leaflet Map

Outline for today

- Types of maps for spatial data
- Map design considerations (color, scale, projection, legend)
- R packages for mapping
- Static maps with tmap
- Interactive maps with leaflet
- Accessing spatial data with tigris and tidycensus

Getting Data with tigris

The {tigris} package provides access to U.S. Census Bureau geographic data. Shapefiles downloaded using {tigris} will be loaded as a simple features (sf) object with geometries.

- A shapefile is a vector data file format commonly used for geospatial analysis.
- Shapefiles contain information for spatially describing features (e.g. points, lines, polygons), as well as any associated attribute information.
- You can find / download shapefiles online (e.g. from the US Census Bureau), or depending on the tools available, access them via packages (like we're doing today).

Getting U.S. County Shapefiles

Entire US

One state

<pre>1 library(tigris) 2 library(sf) 3 counties <- counties(state = NULL, cb = TRUE, progr 4 # Use `cb = TRUE` for simplified geometries 5 glimpse(counties)</pre>	<pre>1 library(tigris) 2 library(sf) 3 counties_md <- counties(state = "Maryland", cb = TR 4 # Use `cb = TRUE` for simplified geometries 5 glimpse(counties_md)</pre>
<pre>Rows: 3,235 Columns: 13 \$ STATEFP <chr> "01", "01", "01", "01", "01", "04", "04", "05", "05", "06", \$ COUNTYFP <chr> "069", "023", "005", "107", "033", "012", "001", "081", "12 \$ COUNTYNS <chr> "00161560", "00161537", "00161528", "00161580", "00161542", \$ AFFGEOID <chr> "0500000US01069", "0500000US01023", "0500000US01005", "0500 \$ GEOID <chr> "01069", "01023", "01005", "01107", "01033", "04012", "0400 \$ NAME <chr> "Houston", "Choctaw", "Barbour", "Pickens", "Colbert", "La \$ NAMELSAD <chr> "Houston County", "Choctaw County", "Barbour County", "Pick \$ STUSPS <chr> "AL", "AL", "AL", "AL", "AL", "AZ", "AZ", "AR", "AR", "CA", \$ STATE_NAME <chr> "Alabama", "Ala</chr></chr></chr></chr></chr></chr></chr></chr></chr></pre>	<pre>Rows: 24 Columns: 13 \$ STATEFP <chr> "24", "24", "24", "24", "24", "24", "24", "24", "24", "24", \$ COUNTYFP <chr> "005", "047", "031", "037", "017", "021", "043", "027", "03 \$ COUNTYNS <chr> "01695314", "01668802", "01712500", "01697853", "01676992", \$ AFFGE0ID <chr> "0500000US24005", "0500000US24047", "0500000US24031", "0500 \$ GEOID <chr> "24005", "24047", "24031", "24037", "24017", "24021", "2404 \$ NAME <chr> "Baltimore", "Worcester", "Montgomery", "St. Mary's", "Char \$ NAMELSAD <chr> "Baltimore County", "Worcester County", "Montgomery County" \$ STUSPS <chr> "MD", "MD", "MD", "MD", "MD", "MD", "MD", "MD", "MD", "MD", "MD", "MD", "Maryland", "Maryland", "Maryland", "Maryland", "Maryland", "Maryland", "Maryland",</chr></chr></chr></chr></chr></chr></chr></chr></pre>

Getting Census Data with tidycensus

```
1 library(tidycensus)
   invisible(
 2
     census_api_key(Sys.getenv("CENSUS_API_KEY"), install = TRUE, overwrite = TRUE)
 3
 4
   options(tigris use cache = TRUE)
 5
   income md <- get acs(geography = "county",</pre>
     state = "MD".
 7
     variables = "B19013 001",
 8
     geometry = FALSE,
 9
     show progress = FALSE)
10
```

Lab 5 has a tutorial on how to get started with {tidycensus} packages. Follow it carefully. Remember to add your **.** Renviron to **.** gitignore so that you do not share your API keys.

37

Plotting Census Data

Your turn in HW 5:

- Choose a U.S. state
- Download county shapefiles with tigris or tidycensus
- Plot a choropleth using tmap
- Add labels and legends

PUBH 6199: Visualizing Data with R

15:00

Summary

- Choose the right map for the data and audience
- Make thoughtful color and projection choices
- Use tmap for quick static/interactive maps
- Use leaflet for rich interactivity
- Access geographic data via tigris and tidycensus

End-of-Class Survey

Fill out the end-of-class survey This is the end of Lecture 5 ~